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ABSTRACT 

We propose a new method to analyze brittleness of 
task networks with respect to not only temporal but 
any arbitrary set of constraints. The method allows the 
detection and enumeration of activities that, with mod-
est duration variation, violate the target constraints.  
1 INTRODUCTION 

Temporal plans for agents that must deal with execu-
tion uncertainty must be designed for execution ro-
bustness.  Planetary rovers, due to their interaction 
with a hard-to-predict environments match this type of 
problem.  Planetary rover plans must be carefully de-
signed and generated on the ground to allow success-
ful execution of tasks while meeting all the required 
timing constraints, energy constraints, and being safe 
at all times. Accurately determining some of those tim-
ing constraints a priori, specially activity duration, is 
quite challenging though due to the natural unpredict-
ability of the environment [1][2].  

The traditional approach used in planetary rover mis-
sions is to add significant temporal margin for execu-
tion robustness; however, this can hamper rover effi-
ciency [3]. Ideally we would use task networks that not 
only are consistent and maximize the vehicle's produc-
tivity, but that are also robust to unexpected events and 
delays. As a corollary, it is therefore critical to evalu-
ate robustness and identify activities and (temporal 
and resource) constraints that cause brittleness to tem-
poral unpredictability.  

This paper addresses the challenge of identifying the 
activities that are most sensitive to temporal unpredict-
ability, in a dynamic scheduling setting, given a set of 
user-specified constraints. We propose a new method 
to analyze the brittleness of task networks with respect 
to not only temporal but any arbitrary set of constraints 
(including resources). It allows the detection and enu-
meration of activities that, with modest task execution 
duration variation, violate the target set of constraints 
and make the success of execution no longer guaran-
teed. In this method, we introduce a metric for meas-
uring an activity's brittleness - defined as the degree of 
acceptable deviation from its nominal duration - and 

describe how that measurement is mapped to task net-
work structure. Complementary to existing work on 
temporal robustness analysis which informs how 
likely a task network is to succeed or not under con-
trollability constraints, the proposed analysis and met-
ric not only generalized robustness analysis to any ar-
bitrary set of constraints (herein temporal controllabil-
ity and energy resource constraints), but it also goes 
deeper to pinpoint the sources of potential brittleness. 
We develop an analyzer that helps human designers 
and/or automated task network generators (e.g. sched-
ulers/planners) focus on and address sources of unde-
sirable brittleness. For the latter, the analyzer proposes 
temporal constraint relaxations (e.g. changing start 
time or execution time windows of certain activities) 
when the brittleness metric values are not satisfactory. 
We apply the approach to a set of task networks in de-
velopment for NASA's next planetary rover and pre-
sent common patterns that are sources of brittleness.  
The proposed technique and tools are currently under 
evaluation for potential use supporting operations of 
the Mars 2020 rover.  

2 BACKGROUND 

We study brittleness analysis in the context of 
NASA’s next planetary rover,  the  Mars  2020  
(M2020)  rover operations. We  derive  task  networks 
from M2020 sol types [4]. In  what  follows  we  de-
scribe  the main  elements  of  a  rover  task  network  
and  existing  robustness  metrics. 

2.1 2020 Rover’s Task Networks 

Based  on  [2,  5],  we  define  a  M2020  sol  type  task  
network  as  a  tuple TN = áA, H, SOCinit, SOCmin, 
SOCmax, SOChandoverñ. The  main  element of our task 
network refers to a set of rover activities 
A={aiáTCi,Di,eiñ ... anáTCn,Dn,enñ}, where:  a) TCi is 
the temporal constraints tuple áTCi,dur, TCi,est, TCi,lst, 
TCi,letñ referring to the nominal duration, earliest start 
time, latest start time and latest end time respectively 
(the duration of planetary rover activities can be quite 
unpredictable [3]  and  TCi,dur is expected be similar); 
b) Di is  the  set  of  the  activity’s  dependency  con-
straints  in  the  form  of aj → ak, i.e. aj depends on ak;  
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c) ei is the rate at which the consumable resource en-
ergy is consumed by activity ai.  

All activities in A must be scheduled (no disjunction is 
considered).  In addition to set A, our task network is 
defined by: d) H is the execution horizon (all activities 
have to finish by then); e) SOCinit is the initial state of 
charge (SOC) of the rover’s battery at the start of task 
network execution; f) SOCmin is the global minimum 
state of charge that is required at all times during exe-
cution; g) SOCmax is the global maximum state of 
charge during execution (it never exceeds it during 
charging  (sleep  mode)); h) SOChandover is the handover 
minimum state of charge that is required at the end of 
the execution. 

2.2 Robustness Analysis 

State-of-the-art analysis has focused on quantifying 
how robust a temporal constraint network is with re-
spect to disturbance (e.g., unforeseen delays). In [6, 7], 
robustness is computed by measuring a Simple Task 
Network (STN) flexibility:  a metric that quantifies the 
aggregate slack in the simple temporal network.  In  
[8],  an STN  is  represented  as  a polyhedron  and  the  
flexibility  linked  to  its  volume.   Although  useful,  
it  is hard to judge from the above metrics if the amount 
of flexibility is enough in certain unpredictable envi-
ronments – with no uncertainty being consider it might 
not imply robustness [9].  Moreover, the above meth-
ods do not inform where more flexibility is needed if 
the metric value is below the acceptable range. 

In [9] robustness is defined as the greatest level of dis-
turbance (delay) on an STN with Uncertainty (STNU) 
at which it is still successfully executed.  In this 
method, computing  robustness is framed as a linear 
constraint optimization problem to compute the maxi-
mum deviation from the nominal case on any activity 
at which the STNU is dynamically controllable.  If a 
Probabilistic STN  (PSTN) is used instead, the level of 
disturbance at which the schedule becomes no longer 
dynamically controllable equates to the probability of 
it breaking during execution.  The same constraint op-
timization problem framework applies in the probabil-
istic case, in which the objective is to maximize the 
probability that all uncertain activity durations fall in-
side the chosen bounds.  The robustness metric in this 
case would be a probability of execution success.  

In [10], the degree of dynamic controllability (DDC) 
of a STNU is used a robustness metric.   DDC  is  de-
fined  as  the proportion  of  STNU contingent  edges  
realizations  in  which  the  temporal  network remains  
dynamically  controllable.   A  parallel  could  be  done  
wrt  PSTN,  in which the DDC would rather be defined 

in terms of probability mass of the respective control-
lable realizations.  

In [11, 12], robustness is also quantified as the likeli-
hood that a PSTN will be executed successfully. The  
approach  assumes  no correlation between the tem-
poral constraints, and therefore, suffers overestima-
tion.  To account for interrelation, [12] propose a 
Monte Carlo approach in which the execution of a 
PSTN is simulated multiple times and the duration of 
contingent/uncertain activities is sampled as they are 
executed. The ratio of successful executions corre-
sponds to the robustness value.  

Similar  to  the  likelihood  of  success,  the risk of  
violating  any  temporal constraints in a PSTN can also 
be interpreted as a robustness metric.  Approaches like 
risk-bounded scheduling [13] guide the search for a 
temporal plan  based  on  a  user-specified  risk  bound  
(e.g.,  5%  risk). In  [14],  a  risk-minimization ap-
proach is used to generate a schedule under strong con-
trollability constraints, in which the risk value  would  
indicate  how  robust  the PSTN is. 

The aforementioned metrics, success probabilities, de-
gree of dynamic controllability and risk bounds, pro-
vide an intuitive way to evaluate if an task network (in 
the form or a STNU or PSTN)  execution  is  likely  to  
succeed  and  whether  the  entire  network  is brittle to 
disturbance or not (note that only temporal constraints 
are considered  in  the  aforementioned  robustness  
metrics).   However,  it  is  hard  to determine  potential  
sources  of  brittleness  when  those  metrics  (which  
boils down to a single output number) do not meet a 
desirable threshold.  Those cases bring interesting and 
important questions: (a) What activities in particular 
are culminating in low robustness?  (b) What  activities  
and  constraints  (temporal  and/or  resource)  are  most 
brittle to delays so that one might try to address spe-
cific issues in task network?  (c) What constraints are 
dominantly more brittle to delays? (d) What are the 
possible ways we can change or relax some of the tem-
poral constraints to bring activities’ and the task net-
work’s brittleness values to an acceptable level? In this 
paper we propose methods to address these questions. 

3 TASK NETWORK BRITTLENESS ANALY-
SIS 

In  this  work,  we  represent  uncertainty  by  associ-
ating a mean (μ) and a standard deviation, sigma (σ) 
(e.g. from a normal distribution), to every contin-
gent/uncertain  activity’s  duration  in  the  task  net-
work.   We  call  the  set  of contingent activities AC 
and the non-contingent/controllable activities AR, 



where A=AC ∪	 AR and herein TCi = áμi,σi, TCi,dur, 
TCi,est, TCi,lst, TCi,letñ.  

We propose a constraint-based brittleness analysis ap-
proach for task networks with uncertainty in which, 
given a set of user-specified brittleness constraints 
BC={bcl...bck}, we enumerate contingent activities, 
from most brittle to least brittle, and inform the causes 
of potentially undesirable brittleness levels. In a nut-
shell, we use a ceteris paribus approach (i.e. “all else 
unchanged”), leveraging [15], to analyze the brittle-
ness of each contingent activity individually against 
BC by exploring different disturbance scenarios and 
evaluating which brittleness constraints are violated. 
We  then  overlay  that  information  onto  the task  
network  structure  to  analyze  why  certain  activities  
are  more  brittle than others.  

3.1.  Ceteris Paribus Analysis 

In the core of the brittleness analysis, we introduce a 
ceteris paribus approach to measure the degree of dis-
turbance (deviation to the mean) at which each target 
contingent activity ai∈AC makes the task network vio-
late one or more constraints in BC. For each activity, 
we measure its maximum duration deviation from the 
mean, while fixing the uncertainty (deviation) of all 
other remaining contingent activities to a certain level 
(called a ceteris paribus scenario).  

Maximum deviation is related to a maximum sigma 
multiplier, 𝑧!", that makes the task network violate one 
or more  brittleness  constraints BC, where  the  max 
duration bounds for that particular activity would be 
(ti_end − ti_start) = [μi−𝑧!"×σi , μi+𝑧!"×σi] and the set of 
violated constraints would be 𝐵𝐶!"⊆	BC for a particu-
lar ceteris paribus scenario. The intuition here is:  the 
smaller the 𝑧!", the more brittle the activity is in the 
network.  In  this  work,  we  use  the  sigma multiplier 
𝑧!" as our central measure of brittleness and the means 
to enumerate brittle activities. We use the terms ‘de-
gree of brittleness’ or ‘brittleness level’ interchangea-
bly to refer to that measure. In what follows we de-
scribe the proposed analysis algorithm to compute 𝑧!".  

Algorithm  1  is  designed  to  order  activities  by  their  
degree  of  brittleness.   It  is  composed  of  two  main  
steps: Step  1 detects  the  single overall  sigma  mul-
tiplier  (applied  to  all  the  contingent  activities  edges  
at once) that makes the network TN violate the con-
junction of constraints in BC (i.e., the BC check).  That 
overall sigma multiplier is used in the second step to 
created specific ceteris  paribus scenarios  when  ana-
lyzing  each  individual  activity.   In  line  2,  the  called 
function adds uncertainty around the mean μ of all ac-
tivities duration by applying a single increasing overall 

Algorithm 1: Ceteris Paribus Brittleness Analysis 
Input: TN, BC, Fx    
Output: a list of contingent activities ordered by 𝑧!" along with their re-
spective violated brittleness constraints. 
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2 
 
3 
4 

5 
6 
7 
8 
9 

multipliers ← {}; 
// Step 1 
xu ← computeOverallSigmaMultiplier(TN,BC); 
// Step 2 
Y = xu×Fx;      // Sets fixed y multiplier  
for ai ∈	AC do  
     𝑧!",	𝐵𝐶!" ← computeActivitySigmaMultiplier(ai,y,TN,BC); 
     multipliers.append( (ai,	𝑧!",	𝐵𝐶!") ); 
end 
ordered_multiplier ← order(multipliers); 
return ordered_multiplier 

 

sigma multiplier x (0 ≤ x ≤ ∞) to all contingent activi-
ties, generating a task network TN with new (larger) 
activities duration bounds. At each increment of x we 
check if the resulting task network satisfy all the brit-
tleness constraints in BC. The (breaking) overall sigma 
multiplier  that makes TN violate BC is set to be xu.    

The most important process of the Algorithm 1 occurs 
in Step 2.  Here we start by setting a fixed sigma mul-
tiplier y (0 ≤ y < xu) in line 3 that will be used to specify 
the ceteris paribus scenario (i.e., the uncertainty level 
of all the other contingent activities) when analyzing a 
particular contingent activity ai.  The algorithm input 
float Fx is used to specify y as a fraction of xu (0≤ Fx 
<1).  As we will see later, y = 0 (by Fx= 0) is a special 
case of the analysis. In lines 4-7, for each activity ai ∈	
AC we compute its sigma multiplier 𝑧!" and 𝐵𝐶!", and 
append the tuple (ai,	𝑧!",	𝐵𝐶!") to the multipliers re-
sults. The function called in line 5 computes starts  by  
first  creating  an  new TN in which all other contingent 
activities aj ∈	AC (j≠i) have their contingent durations 
set to (tj_end−tj_start) = [μj−y×σj, μj+y×σj].  We then 
search for the maximum sigma multiplier 𝑧!" applied 
to ai’s duration bounds that violates one or more ele-
ments of BC. Finally, every  tuple  (ai,	𝑧!",	𝐵𝐶!") is  
stored  and  later  ordered  by  the  value 𝑧!" (line8).  
The ordered list of contingent activity is then returned, 
with each activities brittleness value and the corre-
sponding violated constraints.  

A  special  case  of  the  analysis  in  Algorithm  1  is  
when  the  fixed  sigma multiplier y = 0  in  Step  2  
(i.e.,   all  other contingent  activities aj have  duration 
set  to  be  exactly  the  nominal  case, (tj_end − tj_start)  =  
[μj, μj]).   In  that  case,  we  can  determine  the  max-
imum temporal disturbance allowed for each activity, 
which sets the upper bound of each 𝑧!"(𝑧!

",)*+). Figure  
1  shows  an  example  of  ranking  of  activity  brittle-
ness  based  on 𝑧!" from  one  of  the  studied  M2020  
task  networks with  20  rover  activities,  in  which  we  
consider  three  brittleness  constraints in BC: bcDC is  
the  dynamic  controllability  constraint; bcSOCmin is  the  
global  minimum  SOC constraint; and bcSOChandover is  
the  handover   minimum   SOC  constraint.  Here  we  



 
Figure 1:  Example of brittle activities ranking. 

 

use 1/𝑧!" values to make the brittleness representation 
more intuitive: the higher 1/𝑧!", the more brittle the ac-
tivity is.  Note that the chart in Figure 1 can be mapped 
to maximum delays (𝑧!"×σi) providing actual timing 
information. The proposed algorithm can inform de-
signers or planners what activities are most brittle, 
which brittleness constraints are dominantly more brit-
tle, and which of the activities might need further in-
spection if they do not meet a desirable brittleness 
level. It is worth noting that varying the fixed sigma 
multiplier y can provide useful  information  about  in-
terrelated  contingent  activities. If the resulting  values  
of 𝑧!" do  not  change  with y variation,  then  it  shows  
that activity ai is quite independent of other activities 
duration and uncertainty (or their effect is insignifi-
cant).  If 𝑧!" value does change with varying y, then ai 
is interrelated to other activities uncertainty. 

3.2 Mapping Brittleness to Task Network Structure 

We implement a visualization tool for representing the 
outputs of the aforementioned analysis over a  tem-
poral  network graphical representation (e.g., as a 
STNU or a PSTN). The objective is to help a designer 
to identify brittleness sources. In addition  to  the  tem-
poral  constraints and means and sigma, we provide 
the following information for each activity ai in the 
task network visual representation: brittleness rank; 
𝑧!"; 𝐵𝐶!", maximum delay (𝑧!"×σi); specified execution 
time window; inferred execution time window and 
start time window (using Floyd-Warshall’s all-pair 
shortest path algorithm);  and dependencies. By  visual  
inspection  or  structure  analysis,  designers  and  plan-
ners  can study  the  causes  of  brittleness  given  the  
parameters  above  while  tracing the associated  tem-
poral constraints on the  task network  structure. 

4 ADDRESSING UNDESIRABLE BRITLE-
NESS LEVELS 

In this section, we propose an advisory system that 
suggests temporal constraint relaxations (e.g., 

decrease earliest start time of activity adrive by 300 time 
units)  that  meets  user-specified  brittleness  measure  
thresholds  for  a  set  of target activities in the ceteris 
paribus analysis - usually those activities that were 
found to be problematically brittle.  If the suggestion 
is not satisfactory from the user/planner’s perspective, 
the system would generate the next best relaxation so-
lution. Herein, we focus on temporal constraint relax-
ation suggestions  only.   Moreover,  the  proposed sys-
tem handles only the brittleness constraint bcDC.   Han-
dling multiple  constraints,  specifically resources, is 
left for future work.  

Our task network relaxation problem addressed by the 
proposed advisory system refers to RP = áTN, ABrittle, 
RATC, BMTH, 𝑏𝑚,-./"01

23 ñ, where: TN=áA, Hñ is our task 
network, without resource constraints entirely; ABrittle 
is the set of target activities, ABrittle⊆AC, that brittle val-
ues do not meet an acceptable value and one wants to 
make sure they are in the brittleness measure accepta-
ble range; RATC is a list of relaxable activities’ tem-
poral constraints (e.g. earliest/latest start times); BMTH  
is a mapping between target activities ai ∈	ABrittle to a 
brittleness measure threshold 𝑏𝑚!

23  - herein 𝑏𝑚!
23 re-

fers to either an acceptable maximum sigma multiplier 
𝑧!23  or an acceptable confidence level 𝑝!23  (probabil-
ity mass between lower and upper bounds around the 
mean) in case of normal distribution duration models; 
and 𝑏𝑚,-./"01

23  is the default brittleness measure 
threshold for all non-target activities. The output of 
our system is a set of relaxations, RTC, that maps a sub-
set of RATC to increments or decrements of time. In the 
aforementioned example on activity adrive the solution 
would look like RTC ={𝑟𝑎,4!5-,-6127 → −300} (subscript 
drive,est refers to earliest start time constraint of activ-
ity adrive).  

Algorithm 2 provides the pseudo code for the proposed 
advisory system.  The first step (line 2) corresponds to 
the translation of the input TN to a STNU, generating 
TNSTNU. The resulting STNU has to be dynamic uncon-
trollable otherwise no relaxation is needed. Given 
TNSTNU, we then compute a solution for the relaxation 
problem under the dynamic controllabitity constraint 
(line 3).  Here we use the Conflict-Directed Relaxation 
with Uncertainty (CDRU) algorithm [9] to solve a lin-
ear program optimization problem over the uncontrol-
lable STNU. CDRU finds a least-cost relaxation of the 
temporal constraints in RATC that makes TNSTNU dy-
namic controllable.  Herein, relaxing refers to tighten-
ing or loosening temporal constraints edges. Finally, 
Algorithm 2 allows an interactive process of generat-
ing the next best solution (lines 4-6),  as long as one 
exists.  This is possible thanks  to  search_pointer that  
stores  the  CDRU’s  search  state and learned conflicts  



Algorithm 2: Brittleness Level Guided Task Network Relaxation 
Input: A task network temporal relaxation problem, RP    
Output: a set of relaxations, RATC  
1 
 
2 
 
3 
 
4 
5 
6 
7 

RTC←{};  
// translate task network to its corresponding STNU 
TNSTNU ← generateSTNU(TN, ABrittle, RATC, BMTH, 𝑏𝑚#$%&"'(

)* ); 
// compute relaxation 
search_pointer,RTC ← computesRelaxationSolution(TNSTNU,RATC); 
// provide next best solution if required 
while User needs next solution and one exists do  
    RTC ← search_pointer.nextSolution(); 
end 
return RTC 

to keep computing solutions. We believe this provides 
a  powerful  tool  for  designers  and  planners  to  ex-
plore  different  options of temporal constraints relax-
ations and therefore ways to bring the task network to 
the acceptable brittleness level. 

5 EXPERIMENTAL RESULTS 

5.1 Setup 

We run the constraint-based brittleness analysis using 
a set of nine M2020 sol type task networks. These net-
works are representative of what is currently being in-
vestigated to develop an onboard scheduler for the 
M2020 rover [2].  Sol types generally contain between 
20 and 50 activities, such as driving, conducting re-
mote science, and taking images. Table 1 show some 
of the main properties of each task (i.e. number  of  ac-
tivities  and  dependencies,  as  well  as  the  resulting  
number  of nodes and edges when translating it to an 
STNU).  

Since the M2020 rover is not yet in operations, accu-
rate models of activity duration variance are not yet 
available.  For the purpose of this study, we use an es-
timate of nominal activities duration as their mean 
value (based on conservative estimates from scien-
tists) and select a sigma for each activity randomly as 
a fraction of the mean. With respect to energy con-
straints, we use conservative estimate values for activ-
ity’s energy  consumption  rates  (ei),  as  well  as  es-
timate  of  SOCinit, SOCmin, SOCmax, and SOChandover 
based  on  target  operation  requirements.  In this 
work, we focus on the three brittleness constraints BC: 
bc1=bcDC, bc2=bcSOCmin and bc3=bcSOChandover. 

For each task network, we perform the following: 1) 
run  Algorithm  1  in  the  special  case y = 0  to  identify  
the  upper  bound  𝑧!

",)*+ and plot the brittleness rank-
ing;  and 2) we use the mapping tool  to  generate  
graphical  representation  (STNU-like)  of  the  task  
network with the added layer from the brittleness anal-
ysis data.  Finally, we select a representative task net-
work from the analysis results to run Algorithm 2 and 
generate a temporal relaxation solution to improve 
temporal brittleness, considering constraint bcDC only. 

 
Table 1: Studied M2020 sol types task networks 

with their respective properties 
 

 
Table 2: Summary of brittleness analysis results 

 
 

5.2 Results 

Table 2 shows the overall sigma multiplier 𝑥!" for each 
task network and the maximum values of the target 
sigma multiplier 𝑧!

",)*+to illustrate the large range of 
brittleness in the set. Minimum values of 𝑧!

",)*+ (most 
brittle activities)  matches  the  value  of 𝑥!",  except  
TN  7 where 𝑧!,:!;

",)*+= 0.095. These  results  show  a  
brittle  set  of  task  networks,  given  the  low  𝑥!", that 
is:  with a small variation of one key activity’s duration 
the  task  network  violates  at  least  one  of  the  brit-
tleness  constraints.  The low sigma multipliers reflects 
on the high value of the probability of falling beyond 
the 𝑧!

",)*+values in the activity delay case only 
(1−𝑝!

",)*+), showing a high risk of constraint violation.  
Table 2 also shows dynamic controllability (bc1) as the 
dominant brittleness constraint.  

Plotting brittleness ranking, like in Figure 1, provides 
an effective tool for highlighting the fragile activities. 
Figure 1 shows the case of TN 8 where activity 3 is the 
most brittle,  and  largely  more  brittle  than  the  other 
activities. The  results  from  the ranking and the  map-
ping  approach show two main sources/cases of tem-
poral brittleness in the studied set of M2020 task net-
works: Case 1 represents brittleness due to a tight user-
specified execution window; and Case 2 represents 
brittleness due to a dependency chain.  Activities in 
Case 1 would usually have no temporal dependency to 
other activities, but a tight window between the earli-
est start time and the latest end  time.   Case  2  is  man-
ifested  by  clear temporal/ordering dependencies in 
the graph representation.  In what follows  we  use  task  
network TN  2 as  our  representative  example  since  
it covers the two aforementioned cases.  

Figure 2 represents a portion of the results from the 
mapping tool in the TN 2 case. The brittleness of Ac-
tivity  9 – a Long  Drive  activity –  in Figure 2 (a) is 
primarily  attributed  to  its   tight  execution  window 



 
Figure 2: Brittleness due to (a) tight user-specified 
execution window (Case 1) and (b) to dependen-

cies (Case 2) in TN 2. 
 

compared to its large nominal duration (Case 1).  Each 
activity may have a cutoff time to ensure that the ac-
tivity does not interfere with another higher priority 
activity.  If the activity runs past its cutoff time, then it 
is aborted and the activity fails to be scheduled.  Even 
though the long drive has no dependencies or resource 
contention with any other activity, its nominal dura-
tion is 13044 sec (3hr, 37min) while the difference be-
tween its earliest allowed start time and its cutoff time 
is only slightly longer at 13563 sec (3hr, 46min).  
Then, assuming the activity starts as early as it can, if 
it runs longer than expected by even 9 minutes, it will 
violate its cutoff time and fail to be scheduled.  Due to 
the lack of flexibility given by its execution window, 
even a small fluctuation from its nominal duration will 
result in an inconsistent schedule.  The most common 
example of an activity that is tied to a tight execution 
window in our study is one which has a lighting re-
quirement from science which translates into a tight 
execution window. 

The  7  activities  in  Figure  2  (b), that cannot occur 
concurrently due to hardware resource contention (all 
use the Remote Sensing Mast (RSM)), shows a case of 
Case 2. The first three MastcamZ  activities  (Activi-
ties  23,  24 and 20)  are  imaging  activities.   These 
activities have execution windows that overlap with 
those of the next four activities, which all use the 
Navcam (cameras) in addition to the RSM. Of these 
four activities, the first two create atmospheric moni-
toring movies (Activities 26 and 22) while the second 
two (Activities 25 and 21) generate movies of dust 
devil activity.  These four activities have the same ex-
ecution window and must all end by the same time and 
also share part of their execution windows with the 
previous three activities. Because all of these activities 
use the same hardware and have highly overlapping 
execution windows, they must be placed sequentially.  
As a result, they become fairly constrained in where 
they can be scheduled, making the risk of failure if 
these activities run long quite high.  

Understanding which activities are more brittle and 
why has important use cases.  For example, such 

analysis can assist scientists in pinpointing activities 
that have a high risk of failure and help them under-
stand which constraints might need to be reassessed. 

In  order  to  illustrate  the  proposed  advisory  system,  
we  use  task  network TN  2 which  contains  both 
common brittleness cases.  The constraint-based  brit-
tleness  analysis  highlights  two  highly  brittle  activ-
ities under Case 1: Activities 9 and 4.  It also highlights 
three activities in Case 2:  Activities 25, 26 and 22 
(Figure 2 (b)).  Let us focus on these five most brittle 
activities. We can extract the probability mass 𝑝!" that 
refers  to  a  symmetric  bound  around  the  mean  
(confidence  interval): 𝑝<"=0.04, 𝑝="=0.06, 𝑝>?" =0.84, 
𝑝>@" =0.90  and 𝑝>>" =0.92.   Let’s  use  these values as 
our undesirable  levels  of  brittleness, and the starting 
point of our relaxation approach. We then set the fol-
lowing task network temporal relaxation problem RN 
as the input to Algorithm 2: TN 2 is the target input 
TN; ABrittle={a9, a4, a25, a26, a22}; RATC is set to be the 
earliest and latest start time of all activities in TN 2, 
including  the  five  most  brittle  activities; BMTH is set 
to be the following target brittleness measure, i.e.  the 
target confidence levels for the five target activities, 
BMTH = {𝑏𝑚<

23=0.50, 𝑏𝑚=
23=0.50, 𝑏𝑚>?

23=0.95, 
𝑏𝑚>@

23=0.95, 𝑏𝑚>>
23=0.95}; and finally, no require-

ments are set for 𝑏𝑚,-./"01
23 . 

 With that input, Algorithm 2 will suggest the fol-
lowing solution RTC: 𝑟𝑎<27→ −5371; 𝑟𝑎=27→ −381; 
𝑟𝑎>@27→ −1866; 𝑟𝑎>?27→ −976; 𝑟𝑎>>27→ −151; 𝑟𝑎>+27→ 
−816; 𝑟𝑎>A27→ −1056. This solution indicates that a de-
signer should decrease the earliest start  time  of  ac-
tivities a9, a4, a26, a24, a22, a20 and a23 by  the  indicated 
amount.   It  is  interesting  to  see  that  the  system  is  
relaxing  not  only  the temporal constraints associated 
with the five most brittle activities, but also two addi-
tional activities that play a role in the dependency 
chain shown in Figure 2 (b).  Activities 20 and 23 are 
the most brittle activities on the left hand side time 
window, showing the option of making room for ac-
tivities in the right hand side time window of Figure 2 
(b).  

If we apply the above suggested relaxations to TN 2, 
we can run the constraint-based  brittleness  analysis  
again and  analyze  impact on the brittleness measures. 
In doing so, the target confidence levels are meet 
properly and the brittleness of both the target five ac-
tivities and the whole task network is reduced to the 
acceptable values. We  believe  that  this  capability  
can  be quite powerful and useful not only for human 
planners but also for (offline) automated planners in a 
generated and test/analyze setting. 

 



5 CONCLUSION 

In this paper we presented a new approach for meas-
uring and analyzing the brittleness of a temporal plan 
based on a set of user-specified constraints, as well its 
application to planetary rovers.  We introduced a new 
metric to measure brittleness of activities in the plan 
and algorithms to help designers/planners identify the 
most critical activities that violated the set of user-
specified  brittleness  constraints  (herein  dynamic  
controllability  constraint, global minimum state of 
charge constraint, and handover minimum state of 
charge constraint) with small variations to their dura-
tion.  This analysis can be overlapped onto a STNU 
representation of the plan to augment the understand-
ing of the sources of brittleness and the temporal con-
straints associated. We also present a new advisory 
system that is capable of suggesting temporal con-
straint relaxation to adjust the brittleness measure to 
an acceptable level.  We showed results from a se-
lected set of Mars 2020 planetary rover task  networks  
in  which  two  general  cases  for  activity  brittleness  
emerged, mapping  to  different  ways  to  address  
them.   We  advocate  that  identifying and fixing such 
key brittle activities is paramount in planetary rover 
where large uncertainty exists in the environment.  
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